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Abstract

We describe new capabilities for modeling MPEC problems within the Pyomo modeling
software. These capabilities include new modeling components that represent complementar-
ity conditions, modeling transformations for re-expressing models with complementarity con-
ditions in other forms, and meta-solvers that apply transformations and numeric optimization
solvers to optimize MPEC problems. We illustrate the breadth of Pyomo’s modeling capabil-
ities for MPEC problems, and we describe how Pyomo’s meta-solvers can perform local and
global optimization of MPEC problems.
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1 Introduction

Mathematical Programs with Equilibrium Constraint (MPEC) problems arise in a large number
of applications in engineering and economic systems [6, 21, 25]. An MPEC is an optimization
problem that includes equilibrium contraints in the form of complementarity conditions. Equi-
librium constraints naturally arise as the solution to an optimization subproblem (e.g. for bilevel
programs), variational inequalities, and complementarity problems [13].

Since MPEC problems frequently arise in practice, many algebraic modeling languages (AML)
have integrated capabilities for expressing complementarity conditions [24], including AMLs like
AIMMS [1], AMPL [2, 11], GAMS [12], MATLAB [23] and YALMIP [20]. AMLs are high-level
programming languages for describing and solving mathematical problems, particularly optimization-
related problems [18]. AMLs provide a mechanism for defining variables and generating con-
straints with a concise mathematical representation, which is essential for large-scale, real-world
problems that involve thousands or millions of constraints and variables.

In this paper, we describe new functionality in Pyomo 4.1 for expressing and optimizing
MPEC models in the Pyomo modeling environment. Pyomo is an open-source software pack-
age that supports the definition and solution of optimization applications using the Python lan-
guage [27, 26, 14, 15]. Python is a powerful programming language that has a clear, readable
syntax and intuitive object orientation. Pyomo uses an object-oriented approach for defining mod-
els that contain decision variables, objectives, and constraints. MPEC models can be easily ex-
pressed with Pyomo modeling components for complementarity conditions. Further, Pyomo’s
object-oriented design naturally supports the ability to automate the reformulation of MPEC mod-
els into other forms (e.g. disjunctive programs). We describe Pyomo meta-solvers that transform
MPECs as MIP or NLP problems, which are then optimized with standard solvers. Further, we
describe interfaces to specialized mixed complementarity problem solvers, which solve MPEC
problems expressed without an optimization objective.

The remainder of this paper is organized as follows. Section 2 describes how Pyomo supports
modeling of equilibrium constraints as mixed-complementarity conditions. Section 3 describes
transformation capabilities that automate the reformulation of MPEC models. Section 4 describes
meta-solvers in Pyomo that leverage these transformations to support global and local optimization
of MPEC problems. Section 5 describes future work that is planned for Pyomo.
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2 Modeling Equilibrium Conditions

2.1 Complementarity Conditions

Ferris et al. [7] note that there are a few fundamental forms that account for a wide range of
complementarity conditions that arise in practice. Consider a variable x and function g(x). The
classical form of complementarity condition can be expressed as

x≥ 0⊥ g(x)≥ 0,

which expresses the complementarity restriction that at least one of these must hold with equality.
When the variable x is bounded such that x ∈ [l,u], then a mixed complementarity condition can be
expressed as

l ≤ x≤ u⊥ g(x),

which expresses the complementarity restriction that at least one of the following must hold:

x = l and g(x)≥ 0,
x = u and g(x)≤ 0,

or l < x < u and g(x) = 0.

These forms can be generalized by substituting a function f (x) for the variable x. Thus, a
generalized mixed complementarity condition can be expressed as

l ≤ f (x)≤ u⊥ g(x),

which expresses the complementarity restriction that at least one of the following must hold:

f (x) = l and g(x)≥ 0,
f (x) = u and g(x)≤ 0,

or l < f (x)< u and g(x) = 0.

For completeness, note that the complementarity condition

f (x)⊥ g(x) = 0

is a special case where the function f (x) is unbounded.

2.2 Complementarity Expressions

The design of complementarity conditions in Pyomo relies on the specification of Pyomo constraint
expressions. A Pyomo constraint expression defines an equality, a simple inequality, or a pair of
inequalities. For example:

expr1 = expr2
expr1 <= expr2
const1 <= expr2 <= const2

9



where const i are constant arithmetic expressions that may only contain variables that are fixed, and
expri are arithmetic expressions that contain unfixed variables.

A complementarity condition is defined with a pair of constraint expressions

l1 <= expr1 <= u1 ⊥ l2 <= expr2 <= u2,

where exactly two of the constant bounds l1, u1, l2 and u2 are finite. The non-finite bounds values
are omitted in practice, so this condition directly describes a classical or mixed complementarity
condition. Additionally, a complementarity condition can be expressed with a simple inequality:

l1 <= expr1 <= u1 ⊥ expr2 <= expr3.

This complementarity condition is implicitly transformed to a form with constant bounds:

l1 <= expr1 <= u1 ⊥ expr2− expr3 <= 0.

2.3 Modeling Mixed-Complementarity Conditions

Pyomo employs an object-oriented strategy for representing models. A Pyomo model object con-
tains modeling components that define standard elements of algebraic models (e.g. parameters,
sets, variables, constraints, and objectives). This allows Pyomo to automatically manage the nam-
ing of AML components, and multiple Pyomo models can be simultaneously defined.

Additionally, Pyomo’s modeling capabilities can be extended by simply defining new modeling
components. Pyomo’s pyomo.mpec package defines the Complementarity component that is used
to declare complementarity conditions.

For example, consider the ralph1 problem in MacMPEC [22]:

min 2x− y
0≤ y⊥ y≥ x
x,y≥ 0

The following script defines a Pyomo model for ralph1:

# file ralph1.py

from pyomo.environ import *
from pyomo.mpec import *

model = ConcreteModel()

model.x = Var( within=NonNegativeReals )
model.y = Var( within=NonNegativeReals )

model.f1 = Objective( expr=2*model.x - model.y )

model.compl = Complementarity(
expr=complements(0 <= model.y, model.y >= model.x) )

10



The first lines in this script import Pyomo packages:

from pyomo.environ import *
from pyomo.mpec import *

The first line imports pyomo.environ to initialize Pyomo’s environment, and it imports the core
modeling components from Pyomo. The second line imports modeling components for comple-
mentarity conditions. The subsequent lines in this script create a model, declare variables x and y,
declare an objective f1, and declare a complementarity condition compl.

The complementarity condition is declared with the Complementarity component. In the
simplest case, this Python class takes a keyword argument expr that contains the value of the
complements function. This function accepts two Pyomo constraint expressions that are used to
declare a complementarity condition.

Pyomo also supports indexed components, where a set of components are initialized over an
index set using a construction rule. Thus, the Complementarity component can be declared with
an index set. For example, consider the following model, indexed:

min ∑
n
i=1 i(xi−1)2

0≤ xi ⊥ 0≤ xi+1 i = 1, . . . ,n−1

The following script defines a Pyomo model for indexed with n = 5:

# file ex1a.py

from pyomo.environ import *
from pyomo.mpec import *

n = 5

model = ConcreteModel()

model.x = Var( range(1,n+1) )

model.f = Objective( expr=sum(i*(model.x[i]-1)**2 for i in range(1,n+1)) )

def compl_(model, i):
return complements(model.x[i] >= 0, model.x[i+1] >= 0)

model.compl = Complementarity( range(1,n), rule=compl_ )

The complementarity conditions are defined with a single Complementarity component that is
indexed over the set 1, . . . ,n−1 and initialized with a construction rule compl . This rule is a func-
tion that accepts a model instance and an index, and returns the i-th complementarity condition.

The declared set of indexes may be a superset of the indices that define complementarity condi-
tions. For example, if the construction rule returns Complementarity.Skip, then the correspond-
ing index is skipped. For example:

# file ex1d.py

from pyomo.environ import *
from pyomo.mpec import *

11



n = 5

model = ConcreteModel()

model.x = Var( range(1,n+1) )

model.f = Objective( expr=sum(i*(model.x[i]-1)**2 for i in range(1,n+1)) )

def compl_(model, i):
if i == n:

return Complementarity.Skip
return complements(model.x[i] >= 0, model.x[i+1] >= 0)

model.compl = Complementarity( range(1,n+1), rule=compl_ )

This example can also be expressed with the ComplementarityList component:

# file ex1b.py

from pyomo.environ import *
from pyomo.mpec import *

n = 5

model = ConcreteModel()

model.x = Var( range(1,n+1) )

model.f = Objective( expr=sum(i*(model.x[i]-1)**2 for i in range(1,n+1)) )

model.compl = ComplementarityList()
model.compl.add( complements(model.x[1] >= 0, model.x[2] >= 0) )
model.compl.add( complements(model.x[2] >= 0, model.x[3] >= 0) )
model.compl.add( complements(model.x[3] >= 0, model.x[4] >= 0) )
model.compl.add( complements(model.x[4] >= 0, model.x[5] >= 0) )

This component defines a list of complementarity conditions. The list index can be used in Py-
omo, but this component simplifies the declaration of models for which the index values are not
important. The ComplementarityList component can also be defined with a rule that iteratively
returns complementarity conditions:

# file ex1c.py

from pyomo.environ import *
from pyomo.mpec import *

n = 5

model = ConcreteModel()

model.x = Var( range(1,n+1) )

model.f = Objective( expr=sum(i*(model.x[i]-1)**2 for i in range(1,n+1)) )

12



def compl_(model):
yield complements(model.x[1] >= 0, model.x[2] >= 0)
yield complements(model.x[2] >= 0, model.x[3] >= 0)
yield complements(model.x[3] >= 0, model.x[4] >= 0)
yield complements(model.x[4] >= 0, model.x[5] >= 0)

model.compl = ComplementarityList( rule=compl_ )

Similarly, the construction rule may be a list expression that generates a sequence of comple-
mentarity conditions:

# file ex1e.py

from pyomo.environ import *
from pyomo.mpec import *

n = 5

model = ConcreteModel()

model.x = Var( range(1,n+1) )

model.f = Objective( expr=sum(i*(model.x[i]-1)**2 for i in range(1,n+1)) )

model.compl = ComplementarityList(
rule=(complements(model.x[i] >= 0, model.x[i+1] >= 0) for i in range(1,n)) )

13
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3 MPEC Transformations

Pyomo’s object-oriented design supports the structured transformation of models. Pyomo can
iterate through model components as well as nested model blocks. Thus, model components can
be easily transformed locally, and global data can be collected to support global transformations.
Further, Pyomo components and blocks can be activated and deactivated, which facilitates in place
transformations that do not require the creation of a separate copy of the original model.

Pyomo’s pyomo.mpec package defines several model transformations that can be easily ap-
plied. For example, if model defines an MPEC model (as in our previous examples), then the
following example illustrates how to apply a model transformation:

transformed = model.transform("mpec.simple_nonlinear")

In this case, the mpec.simple nonlinear transformation is applied. The following sections de-
scribe the transformations currently supported in pyomo.mpec.

3.1 Standard Form

In Pyomo, a complementarity condition is expressed as a pair of constraint expressions

l1 <= expr1 <= u1 ⊥ l2 <= expr2 <= u2,

where exactly two of the constant bounds l1, u1, l2 and u2 are finite. The non-finite bounds are
typically omitted, but the value None can be used to express infinite bounds. Additionally, each
constraint expression can be expressed with a simple inequality of the form

expr1 <= expr2.

The mpec.simple nonlinear transformation reformulates each complementarity condition in
a model into a standard form:

l1 <= expr <= u1 ⊥ l2 <= var <= u2,

where exactly two of the constant bounds l1, u1, l2 and u2 are finite, and either l2 is zero or both l2
or u2 are finite.

Note that this transformation creates new variables and constraints as part of this transforma-
tion. For example, the complementarity condition

1≤ x+ y ⊥ 1≤ 2x− y,

get re-expressed as the following:
1≤ x+ y
v = 2x− y−1
v ∈ R,v≥ 0

15



For each complementary condition object, the new variable and constraints are added as ad-
ditional components within the complementarity object. Thus, the overall structure of the MPEC
model is not changed by this transformation.

3.2 Simple Nonlinear

The mpec.simple nonlinear transformation begins by applying the mpec.standard form trans-
formation. Subsequently, a nonlinear constraint is created that defines the complementarity con-
dition. This is a simple nonlinear transformation adapted from Ferris et al. [8], which can be
described by three different cases:

• If l1 is finite, then the following constraint is defined:

(expr− l1)∗ v≤ ε

• If u1 is finite, then the following constraint is defined:

(u1− expr)∗ v≤ ε

• If l2 and u2 are both finite, then the following constraints are defined:

(var− l2)∗ expr ≤ ε

(var−u2)∗ expr ≤ ε

Each of these cases ensure that the complementarity condition is met when ε is zero. For example,
in the first case, we know that 0≤ v and 0≤ expr− l1. When ε is zero, this constraint ensures that
either v is zero or expr− l1 is zero.

This transformation uses the parameter mpec bound, which defines the value for ε for ev-
ery complementarity condition. This allows for the specification of a relaxed nonlinear problem,
which may be easier to optimize with some nonlinear programming solvers. The default value of
mpec bound is zero.

3.3 Simple Disjunction

The mpec.simple disjunction transformation expresses a complementarity condition as a dis-
junctive program. We are given a complementarity condition defined with a pair of constraint
expressions

l1 <= expr1 <= u1 ⊥ l2 <= expr2 <= u2,

where exactly two of the constant bounds l1, u1, l2 and u2 are finite. Without loss of generality, we
assume that either l1 or u1 is finite.

This transformation can be described by three different cases:

16



• If the first constraint is an equality, then the complementarity condition is trivially replaced
by that equality constraint.

• If both bounds on the first constraint are finite but different, then the disjunction has the
form:  Y1

l1 = expr1
expr2 ≥ 0

∨ Y2
expr1 = u1
expr2 ≤ 0

∨ Y3
l1 ≤ expr1 ≤ u1

expr2 = 0


Y1 YY2 YY3 = True

Y1,Y2,Y3 ∈ {True,False}

• Otherwise, each constraint is a simple inequality. The complementarity condition is refor-
mulated as

0 <= expr1 ⊥ 0 <= expr2,

and the disjunction has the form: Y
0 = expr1
0≤ expr2

∨ ¬Y
0≤ expr1
0 = expr2


Y ∈ {True,False}

This transformation makes use of modeling components and transformations from Pyomo’s
pyomo.gdp package [29]. The transformation expresses each of the disjunctive terms explicitly
using Disjunct components and the select exactly one logical condition using the Disjunction
component. The transformation adds the Disjunct and Disjunction components within the ob-
jects that represent the complementarity conditions. It then recasts the modified complementarity
components into simple Block components. This localizes all changes to the model to the individ-
ual complementarity components. Subsequent transformation of the disjunctive expressions to al-
gebraic constraints can be effected through either Big-M (gdp.bigm) or Convex Hull (gdp.chull)
transformations.

3.4 AMPL Solver Interface

Solvers like PATH [5] have been tailored to work with the AMPL Solver Library (ASL). AMPL
uses nl files to communicate with solvers, which read nl files with the ASL. Pyomo can also
create nl files, and the mpec.nl transformation processes Complementarity components into a
canonical form that is suitable for this format [7].
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4 Solver Interfaces and Meta-Solvers

Pyomo supports interfaces to third-party solvers as well as meta-solvers that apply transformations
and third-party solvers, perhaps in an iterative manner. The pyomo.mpec package includes an
interface to the PATH solver, as well as several meta-solvers. These are described in this section,
and examples are provided that employ the pyomo command-line interface.

4.1 Nonlinear Reformulations

The mpec.simple nonlinear transformation provides a generic way for transforming an MPEC
into a nonlinear program. When the MPEC only has continuous decision variables, the resulting
model can be optimized by a wide range of solvers.

For example, the pyomo command-line interface allows the user to specify a nonlinear solver
and a model transformation that is applied to a model:

pyomo solve --solver=ipopt --transform=mpec.simple_nonlinear ex1a.py

This example illustrates the use of the ipopt interior-point solver with the
mpec.simple nonlinear transformation. When a transformation is used directly like this, the
results that are returned to the user include decision variables for the transformed model. Py-
omo does not have general capabilites for mapping a solution back into the space from the original
model. In this example, the results object includes values for the x variables as well as the variables
v introduced when applying the transformation to the standard form (see above).

Pyomo includes a meta-solver, mpec nlp that applies the nonlinear transformation, performs
optimization, and then returns results for the original decision variables. For example, mpec nlp
executes the same logic as the previous pyomo example:

pyomo solve --solver=mpec_nlp ex1a.py

Additionally, this meta-solver can also manipulate the ε values in the model, starting with larger
values and iteratively tightening them to generate a more accurate model.

pyomo solve --solver=mpec_nlp \
--solver-options="epsilon_initial=1e-1 epsilon_final=1e-7" ex1a.py

This approach may be useful when using a nonlinear solver that has difficulty optimizing with
equality constraints.

4.2 Disjunctive Reformulations

The mpec.simple disjunction transformation provides a generic way for transforming an MPEC
into a disjunctive program. The mpec minlp solver applies this transformation to create a nonlinear
disjunctive program, and then further reformulates the disjunctive model using a “Big-M” trans-
formation that is provided by the pyomo.gdp package. The resulting transformation is similar the
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reformulation of bilevel models described by Fortuny-Amat and McCarl [10]. If the original model
was nonlinear, then the resulting model is a mixed-integer nonlinear program (MINLP). Pyomo in-
cludes interfaces to solvers that use the AMPL Solver Library (ASL), so mpec minlp can optimize
nonlinear MPECs with a solver like Couenne [3].

If the original model was a linear MPEC, then the resulting model is a mixed-integer linear
program that can be globally optimized (e.g. see Hu et al. [16], Júdice [17]). For example, the
pyomo command can be used to execute the mpec minlp solver using a specified MIP solver:

pyomo solve --solver=mpec_minlp --solver-options="solver=glpk" ralph1.py

Note that Pyomo includes interfaces to a variety of commonly used MIP solvers, including CPLEX,
Gurobi, CBC, and GLPK.

4.3 PATH and the ASL Solver Interface

Pyomo’s solver interface for the AMPL Solver Library (ASL) applies the mpec.nl transformation,
writes an AMPL .nl file, executes an ASL solver, and then loads the solution into the original
model. Pyomo provides a custom interface to the PATH solver [5], which simply allows the solver
to be specified as path while the solver executable is named pathamp.

The pyomo command can execute the PATH solver by simply specifying the path solver name.
For example, consider the munson1 problem from MCPLIB:

# file munson1.py

from pyomo.environ import *
from pyomo.mpec import *

model = ConcreteModel()

model.x1 = Var()
model.x2 = Var()
model.x3 = Var()

model.f1 = Complementarity(expr=
complements(model.x1 >= 0,

model.x1 + 2*model.x2 + 3*model.x3 >= 1))

model.f2 = Complementarity(expr=
complements(model.x2 >= 0,

model.x2 - model.x3 >= -1))

model.f3 = Complementarity(expr=
complements(model.x3 >= 0,

model.x1 + model.x2 >= -1))

20



This problem can be solved with the following command:

pyomo solve --solver=path munson1.py
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5 Discussion

Pyomo supports the ability to model complementarity conditions in a manner that is similar to
other AMLs. For example, Pyomo’s pyomo.data package [28] includes Pyomo formulations for
many of the MacMPEC [22] and MCPLIB [4] models, which were originally formulated in GAMS
and AMPL. However, Pyomo does not currently support related modeling capabilities for equilib-
rium models, variational inequalities and embedded models, which are supported by the GAMS
extended mathematical programming framework [9].

The tranformations and meta-solvers currently included in Pyomo illustrate how Pyomo’s
MPEC modeling capability can be leveraged. We expect these capabilities to mature and expand in
response to application needs. For example, the mpec.simple nonlinear transformation could
be expanded to support reformulations that are well-suited for sequential quadratic programming
solvers [19]. Similarly, current meta-solvers could be extended to directly support the communi-
cation of suffix information from the solver back to the original model.
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